Pular para o conteúdo principal

ESTÁTICA

Símbolo da Estatística                                                                               Símbolo da Estatística
A Estatística é bastante utilizada em diversos ramos da sociedade, no intuito de realizar pesquisas, colher dados e processá-los, analisar informações, apresentar situações através de gráficos de fácil compreensão. Os meios de comunicação, ao utilizarem gráficos, deixam a leitura mais agradável. O IBGE (Instituto Brasileiro de Geografia e Estatística) é considerado um órgão importante e conceituado na área. No intuito de conhecer e aprofundar nos estudos estatísticos precisamos conhecer alguns conceitos e fundamentos primordiais para o desenvolvimento de uma pesquisa.

Conceitos e Fundamentos

População: conjunto de elementos, número de pessoas de uma cidade.
Amostra: parte representativa de uma população.
Variável: depende da abordagem da pesquisa, da pergunta que será feita. Exemplo: Qual sua marca de carro favorita? Ford, Volks, Fiat, Peugeot, Nissan são alguns exemplos de resposta.
Frequência absoluta: valor exato, número de vezes que o valor da variável é citado.
Frequência relativa: valor representado através de porcentagem, divisão entre a frequência absoluta de cada variável e o somatório das frequências absolutas.

Medidas de tendência central

Média aritmética: medida de tendência central. Somatório dos valores dos elementos, dividido pelo número de elementos.
Média aritmética ponderada: Somatório dos valores dos elementos multiplicado pelos seus respectivos pesos, dividido pela soma dos pesos atribuídos.
Moda: valor de maior frequência em uma série de dados, o que mais se repete.
Mediana: medida central em uma determinada sequência de dados numéricos.

Medidas de dispersão

Amplitude: subtração entre o maior valor e o menor valor dos elementos do conjunto.
Variância: dispersão dos dados variáveis em relação à média.
Desvio Padrão: raiz quadrada da variância. Indica a distância média entre a variável e a média aritmética da amostra.
Marcos Noé
Graduado em Matemática
SILVA, Marcos Noé Pedro da. "Estatística"; Brasil Escola. Disponível em <http://brasilescola.uol.com.br/matematica/estatistica-1.htm>. Acesso em 31 de outubro de 2017.



Comentários

Postagens mais visitadas deste blog

Arranjo simples

Utilizamos o  arranjo simples  para obter a quantidade de agrupamentos possíveis de serem realizados com os elementos de um conjunto finito. No arranjo os elementos trocam de posição, ou seja, ordem. Com isso os agrupamentos tornam-se distintos, por possuírem seus elementos organizados em uma ordem diferente. Veja a seguir um exemplo de arranjo simples. Exemplo: Mostre os agrupamentos possíveis de serem realizados com o conjunto A ={5,6,7,8}; cada agrupamento deve possuir 3 elementos distintos.

Combinação com repetição

Para introduzirmos o conceito de  combinação com repetição , é importante relembrar a definição formal de combinação simples. Considere  n  objetos diferentes. Se tratarmos da contagem do número de maneiras de escolher  k  dentre esses  n  objetos sem considerarmos a ordem, então criamos uma combinação destes elementos sem repetição. A fórmula para obter esta combinação é dada por:

Triângulo de Pascal

Para melhor entendimento a respeito das propriedades do  Triângulo de Pascal , vamos apresentar o conceito de combinação e coeficientes binomiais. Imagine o seguinte cenário: Estamos organizando um campeonato de xadrez com 12 participantes. De quantas maneiras possíveis podemos criar as duplas para disputar a primeira partida? Este problema pode ser solucionado calculando a combinação de 12 jogadores organizados de 2 em 2. Que nos traz: